Cart (Loading....) | Create Account
Close category search window
 

Maximal Subspace Coregulated Gene Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yuhai Zhao ; Northeastern Univ., Shenyang ; Yu, J.X. ; Guoren Wang ; Lei Chen
more authors

Clustering is a popular technique for analyzing microarray data sets, with n genes and m experimental conditions. As explored by biologists, there is a real need to identify coregulated gene clusters, which include both positive and negative regulated gene clusters. The existing pattern-based and tendency-based clustering approaches cannot directly be applied to find such coregulated gene clusters, because they are designed for finding positive regulated gene clusters. In this paper, in order to cluster coregulated genes, we propose a coding scheme that allows us to cluster two genes into the same cluster if they have the same code, where two genes that have the same code can be either positive or negative regulated. Based on the coding scheme, we propose a new algorithm for finding maximal subspace coregulated gene clusters with new pruning techniques. A maximal subspace coregulated gene cluster clusters a set of genes on a condition sequence such that the cluster is not included in any other subspace coregulated gene clusters. We conduct extensive experimental studies. Our approach can effectively and efficiently find maximal subspace coregulated gene clusters. In addition, our approach outperforms the existing approaches for finding positive regulated gene clusters.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.