By Topic

Spectral and Spatial Complexity-Based Hyperspectral Unmixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sen Jia ; Zhejiang Univ., Hangzhou ; Yuntao Qian

Hyperspectral unmixing, which decomposes pixel spectra into a collection of constituent spectra, is a preprocessing step for hyperspectral applications like target detection and classification. It can be considered as a blind source separation (BSS) problem. Independent component analysis, which is a widely used method for performing BSS, models a mixed pixel as a linear mixture of its constituent spectra weighted by the correspondent abundance fractions (sources). The sources are assumed to be independent and stationary. However, in many instances, this assumption is not valid. In this paper, a complexity-based BSS algorithm is introduced, which studies the complexity of sources instead of the independence. We extend the 1-D temporal complexity, which is called complexity pursuit that was proposed by Stone, to the 2-D spatial complexity, which is named spatial complexity BSS (SCBSS), to describe the spatial autocorrelation of each abundance fraction. Further, the temporal complexity of spectrum is combined into SCBSS to account for the spectral smoothness, which is termed spectral and spatial complexity BSS. More importantly, a strict theoretic interpretation is given, showing that the complexity-based BSS is very suitable for hyperspectral unmixing. Experimental results on synthetic and real hyperspectral data demonstrate the advantages of the proposed two algorithms with respect to other methods.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 12 )