By Topic

Hybrid-Polarity SAR Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. Keith Raney ; Johns Hopkins Univ., Laurel

A synthetic aperture radar (SAR) often is constrained to transmit only one polarization. Within this constraint, two aggressive measurement objectives are 1) full characterization and exploitation of the backscattered field, and 2) invariance to geometrical orientations of features in the scene. Full characterization implies coherent dual-polarization to support the four Stokes parameters. These are rotationally invariant with respect backscatterer orientation if and only if the transmission is circularly polarized. Given that the data products are the Stokes parameters, the receivers can use any orthogonal polarization basis. A SAR in hybrid-polarity architecture (CL-pol) transmits circular polarization and receives two orthogonal mutually coherent linear polarizations, which is one manifestation of compact polarimetry. The resulting radar is relatively simple to implement, and has unique self-calibration features and low susceptibility to noise and cross-channel errors. It is the architecture of choice for two lunar radars scheduled for launch in 2008. Data from a CL-pol SAR yield to decomposition strategies such as the m-delta method introduced in this paper.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:45 ,  Issue: 11 )