By Topic

From Crispness to Fuzziness: Three Algorithms for Soft Sequential Pattern Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fiot, C. ; Univ. of Montpellier II, Montpellier ; Laurent, A. ; Teisseire, M.

Most real world databases consist of historical and numerical data such as sensor, scientific or even demographic data. In this context, classical algorithms extracting sequential patterns, which are well adapted to the temporal aspect of data, do not allow numerical information processing. Therefore, the data are pre-processed to be transformed into a binary representation, which leads to a loss of information. Fuzzy algorithms have been proposed to process numerical data using intervals, particularly fuzzy intervals, but none of these methods is satisfactory. Therefore this paper completely defines the concepts linked to fuzzy sequential pattern mining. Using different fuzzification levels, we propose three methods to mine fuzzy sequential patterns and detail the resulting algorithms (SpeedyFuzzy, MiniFuzzy, and TotallyFuzzy). Finally, we assess them through different experiments, thus revealing the robustness and the relevancy of this work.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:15 ,  Issue: 6 )