By Topic

Quantum Genetic Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Malossini, A. ; Univ. of Trento, Trento ; Blanzieri, E. ; Calarco, T.

The complexity of the selection procedure of a genetic algorithm that requires reordering, if we restrict the class of the possible fitness functions to varying fitness functions, is , where is the size of the population. The quantum genetic optimization algorithm (QGOA) exploits the power of quantum computation in order to speed up genetic procedures. In QGOA, the classical fitness evaluation and selection procedures are replaced by a single quantum procedure. While the quantum and classical genetic algorithms use the same number of generations, the QGOA requires fewer operations to identify the high-fitness subpopulation at each generation. We show that the complexity of our QGOA is in terms of number of oracle calls in the selection procedure. Such theoretical results are confirmed by the simulations of the algorithm.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:12 ,  Issue: 2 )