By Topic

Properties of Symmetric Fitness Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sung-Soon Choi ; Seoul Nat. Univ., Seoul ; Yung-Keun Kwon ; Byung-Ro Moon

The properties of symmetric fitness functions are investigated. We show that the search spaces obtained from symmetric functions have the zero-correlation structures between fitness and distance. It is also proven that symmetric functions induce a class of the hardest problems in terms of the epistasis variance and its variants. These analyses suggest that the existing quantitative measures cannot discriminate among symmetric functions, which reveals critical limitations of the measures. To take a closer look at the symmetric functions, additional analyses are performed from other viewpoints including additive separability and boundedness. It is shown that additive separability in a symmetric function is closely related to the symmetry of its subfunctions. This elucidates why most of the well-known symmetric fitness functions are additively inseparable. The properties of two-bounded symmetric functions are investigated and they are utilized in designing an efficient algorithm to check additive separability for the two-bounded functions. Throughout this paper, we heavily use the generalized Walsh transform over multary alphabets. Our results have an independent interest as a nontrivial application of the generalized Walsh analysis.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:11 ,  Issue: 6 )