By Topic

Optimum Design of the Current-Source Flyback Inverter for Decentralized Grid-Connected Photovoltaic Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Two alternative modes of operation for the current-source flyback inverter are investigated in this paper. The discontinuous conduction mode (DCM), where a constant switching frequency (CSF) control method is applied, and the boundary between continuous and DCM (BCM) that is introduced for photovoltaic (PV) applications in this paper (where a variable switching frequency control method is applied). These two control methods are analytically studied and compared in order to establish their advantages as well as their suitability for the development of an inverter for decentralized grid-connected PV applications. An optimum design methodology is developed, aiming for an inverter with the smallest possible volume for the maximum power transfer to the public grid and wide PV energy exploitation. The main advantages of the current-source flyback inverter are very high-power density and high efficiency due to its simple structure, as well as high-power factor regulation. The design and control methodology are validated by personal computer simulation program with integrated circuit emphasis (PSPICE) simulation and experimental results, accomplished on a laboratory prototype.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 1 )