By Topic

A Physically Based Dynamic Model for Solid Oxide Fuel Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Caisheng Wang ; Wayne State Univ., Detroit ; Nehrir, M.H.

This paper presents a physically based dynamic model for tubular solid oxide fuel cells (SOFCs) based on the electrochemical and thermodynamic characteristics inside SOFC. The diffusion, material conservation, electrochemical, and thermodynamic equations are used to develop the SOFC model. The effect of temperature on the steady-state (V-I and P-I) characteristics of the SOFC model has been studied, and the model responses have been obtained for constant fuel flow as well as for constant fuel utilization operating modes. The dynamic characteristics of the model are investigated in small, medium, and large timescales, from milliseconds to minutes. The model has been implemented in MATLAB/Simulink and used to investigate the distributed generation applications of SOFCs.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:22 ,  Issue: 4 )