Cart (Loading....) | Create Account
Close category search window
 

The Effectiveness of Checksums for Embedded Control Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maxino, T.C. ; Lexmark Res. & Dev. Corp., Cebu ; Koopman, P.J.

Embedded control networks commonly use checksums to detect data transmission errors. However, design decisions about which checksum to use are difficult because of a lack of information about the relative effectiveness of available options. We study the error detection effectiveness of the following commonly used checksum computations: exclusive or (XOR), two's complement addition, one's complement addition, Fletcher checksum, Adler checksum, and cyclic redundancy codes (CRCs). A study of error detection capabilities for random independent bit errors and burst errors reveals that XOR, two's complement addition, and Adler checksums are suboptimal for typical network use. Instead, one's complement addition should be used for networks willing to sacrifice error detection effectiveness to reduce compute cost, Fletcher checksum for networks looking for a balance of error detection and compute cost, and CRCs for networks willing to pay a higher compute cost for significantly improved error detection.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:6 ,  Issue: 1 )

Date of Publication:

Jan.-March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.