Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Reconstruction and Recognition of Tensor-Based Objects With Concurrent Subspaces Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dong Xu ; Nanyang Technol. Univ., Singapore ; Shuicheng Yan ; Lei Zhang ; Lin, S.
more authors

Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. In each of these subspaces, correlations with respect to one of the tensor dimensions are reduced, enabling better object reconstruction performance. Concurrent subspaces analysis (CSA) is presented to efficiently learn these subspaces in an iterative manner. In contrast to techniques such as PCA which vectorize tensor data, CSA's direct use of data in tensor form brings an enhanced ability to learn a representative subspace and an increased number of available projection directions. These properties enable CSA to outperform traditional algorithms in the common case of small sample sizes, where CSA can be effective even with only a single sample per class. Extensive experiments on images of faces and digital numbers encoded as second or third order tensors demonstrate that the proposed CSA outperforms PCA-based algorithms in object reconstruction and object recognition.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:18 ,  Issue: 1 )