By Topic

Delta–Sigma D/A Converter Using Binary- Weighted Digital-to-Analog Differentiator for Second-Order Mismatch Shaping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heng-Yu Jian ; Univ. of California at Los Angeles, Los Angeles ; Zhiwei Xu ; Mau-Chung Frank Chang

A multibit digital-analog (D/A) differentiator is used in the forward correction path of a dual-truncation delta-sigma (DeltaSigma) D/A converter (DAC) to obtain the desired second-order noise-shaping function for converting mismatch-induced in-band quantization noise to out-of-band frequencies. The multibit D/A differentiator can be configured by embedding binary-weighted current-steering DAC elements into digital differentiators without concern of linearity. In simulations, the newly proposed DeltaSigma DAC is 20 dB more effective in noise reduction than widely adopted first-order noise-shaping methods under the identical mismatch conditions of DAC elements (2% in average global mismatch and 0.3% in adjacent element mismatch). This method also offers advantages of compact circuit implementation with smaller routing area and less power consumption over those of thermometer-coded or digital signal processing based counterparts with the same second-order mismatch shaping.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:55 ,  Issue: 1 )