By Topic

A unified approach to the design of robust narrow-band antenna array processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. H. Er ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Inst., Singapore ; A. Cantoni

A unified approach to the design of robust narrowband antenna array processors is presented. The approach is based on the idea of minimizing the weighted mean-square-deviation between the desired response and the response of the processor over variations in parameters. Three specific examples of robust design are considered: robustness against directional mismatch, robustness against array geometry errors, and robustness against channel phase errors. Initially, a general quadratic constraint on the weights is developed. However, it is then shown that the quadratic constraint can be replaced by linear constraints or at most linear constraints plus norm constraint. These latter constraints are no more complex than those required for designs which do not incorporate robustness features explicitly. Numerical results show that the proposed approach appears to offer a unified treatment for directly designing narrowband processors which are robust against various types of errors and mismatches between signal model and actual scenario

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:38 ,  Issue: 1 )