By Topic

Thermal Resistance Measurement of LED Package with Multichips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lan Kim ; Myongji Univ., Kyunggi ; Moo Whan Shin

Thermal transient measurements of high power GaN-based light-emitting diodes (LEDs) with multichip designs are presented and discussed in the paper. Once transient cooling curve was obtained, the structure function theory was applied to determine the thermal resistance of packages. The total thermal resistance from junction to ambient considering optical power is 19.87 K/W, 10.78 K/W, 6.77 K/W for the one-chip, two-chip and four-chip packages, respectively. The contribution of each component to the total thermal resistance of the package can be determined from the cumulative structure function and differential structure function. The total thermal resistance of multichip packages is found to decrease with the number of chips due to parallel heat dissipation. However, the effect of the number of chips on thermal resistance of package strongly depends on the ratio of partial thermal resistance of chip and that of slug. Therefore, an important thermal design rule for packaging of high power multichip LEDs has been analogized.

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:30 ,  Issue: 4 )