By Topic

A Study on the Thermal Fatigue Behavior of Solder Joints Under Power Cycling Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Se Young Yang ; Samsung Electron. Co., Ltd., Seoul ; Ilho Kim ; Soon-Bok Lee

Failure mechanisms exposed by environmental accelerating testing methods such as thermal cycling or thermal shock test, may differ from those at service operating conditions. While the device is heated up or cooled down evenly on its external surface during environmental testing, real operating powered devices experience temperature gradients caused by internal local heating, components' different heat dissipation capability, and ambient temperature variation, etc. In this study, a power cycling technique is introduced to better approximate the field operating conditions so as to activate the field failure modes. Power cycling thermal fatigue test is performed with different ball grid array solder joints, that is, lead contained [Sn/37 Pb (SP)] and lead free [Sn/4.0Ag/0.5 Cu (SAC)], and the result is compared. In order to account for the thermal fatigue life behavior discrepancy for different solder joint composition, real time Moire interferometry is applied to measure the global/local thermo-mechanical behavior during power cycling excursion. Effective damage parameter, the total average shear strain, is extracted from the experiment and applied to account for the difference in fatigue life result of two different solders. In addition, amount of experimentally measured total average shear strain is mutually verified with finite element method analysis. It is clear that total average shear strain of a solder joint can be an effective damage parameter to predict thermo-mechanical fatigue life. A physical mechanism in terms of thermal material property of solder joints' is proposed to offer some thoughts to abnormal shear strain behavior that leads to discrepancies in fatigue life of two solders. An importance of power cycling testing method is emphasized for certain package designs.

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:31 ,  Issue: 1 )