By Topic

Error Moderation in Low-Cost Machine-Learning-Based Analog/RF Testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stratigopoulos, H.-G. ; TIMA Lab., CNRS, Grenoble ; Makris, Y.

Machine-learning-based test methods for analog/RF devices have been the subject of intense investigation over the last decade. However, despite the significant cost benefits that these methods promise, they have seen a limited success in replacing the traditional specification testing, mainly due to the incurred test error which, albeit small, cannot meet industrial standards. To address this problem, we introduce a neural system that is trained not only to predict the pass/fail labels of devices based on a set of low-cost measurements, as aimed by the previous machine-learning-based test methods, but also to assess the confidence in this prediction. Devices for which this confidence is insufficient are then retested through the more expensive specification testing in order to reach an accurate test decision. Thus, this two-tier test approach sustains the high accuracy of specification testing while leveraging the low cost of machine-learning-based testing. In addition, by varying the desired level of confidence, it enables the exploration of the tradeoff between test cost and test accuracy and facilitates the development of cost-effective test plans. We discuss the structure and the training algorithm of an ontogenic neural network which is embodied in the neural system in the first tier, as well as the extraction of appropriate measurements such that only a small fraction of devices are funneled to the second tier. The proposed test-error-moderation method is demonstrated on a switched-capacitor filter and an ultrahigh-frequency receiver front end.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 2 )