By Topic

eRAID: Conserving Energy in Conventional Disk-Based RAID System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Wang ; Univ. of Central Florida, Orlando ; Huijun Zhu ; Dong Li

Recently, high-energy consumption has become a serious concern for both storage servers and data centers. Recent research studies have utilized the short transition times of multispeed disks to decrease energy consumption. Manufacturing challenges and costs have so far prevented commercial deployment of multispeed disks. In this paper, we propose an energy saving policy, eRAID (energy-efficient RAID), for conventional disk-based mirrored and parity redundant disk array architectures. eRAID saves energy by spinning down partial or the entire mirror disk group with constraints of acceptable performance degradation. We first develop a multiconstraint energy-saving model for the RAID environment by considering both disk characteristics and workload features. Then, we develop a performance (response time and throughput) control scheme for eRAID based on the analytical model. Experimental results show that eRAID can save up to 32 percent energy while satisfying the predefined performance requirement.

Published in:

Computers, IEEE Transactions on  (Volume:57 ,  Issue: 3 )