By Topic

Memory Data Flow Modeling in Statistical Simulation for the Efficient Exploration of Microprocessor Design Spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Davy Genbrugge ; Ghent Univ., Ghent ; Lieven Eeckhout

Microprocessor design is both complex and time consuming: exploring a huge design space for identifying the optimal design under a number of constraints is infeasible using detailed architectural simulation of entire benchmark executions. Statistical simulation is a recently introduced approach for efficiently culling the microprocessor design space. The basic idea of statistical simulation is to collect a number of important program characteristics and to generate a synthetic trace from it. Simulating this synthetic trace is extremely fast as it contains only a million instructions. This paper improves the statistical simulation methodology by proposing accurate memory data flow models. We propose 1) cache miss correlation, or measuring cache statistics conditionally dependent on the global cache hit/miss history, for modeling cache miss patterns and memory-level parallelism, 2) cache line reuse distributions for modeling accesses to outstanding cache lines, and 3) through-memory read-after-write dependency distributions for modeling load forwarding and bypassing. Our experiments using the SPEC CPU2000 benchmarks show substantial improvements compared to current state-of-the-art statistical simulation methods. For example, for our baseline configuration, we reduce the average instructions per cycle (IPC) prediction error from 10.9 to 2.1 percent; the maximum error observed equals 5.8 percent. In addition, we show that performance trends are predicted very accurately, making statistical simulation enhanced with accurate data flow models a useful tool for efficient and accurate microprocessor design space explorations.

Published in:

IEEE Transactions on Computers  (Volume:57 ,  Issue: 1 )