Cart (Loading....) | Create Account
Close category search window

A Noise-Robust FFT-Based Auditory Spectrum With Application in Audio Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Chu ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC ; Champagne, B.

In this paper, we investigate the noise robustness of Wang and Shamma's early auditory (EA) model for the calculation of an auditory spectrum in audio classification applications. First, a stochastic analysis is conducted wherein an approximate expression of the auditory spectrum is derived to justify the noise-suppression property of the EA model. Second, we present an efficient fast Fourier transform (FFT)-based implementation for the calculation of a noise-robust auditory spectrum, which allows flexibility in the extraction of audio features. To evaluate the performance of the proposed FFT-based auditory spectrum, a set of speech/music/noise classification tasks is carried out wherein a support vector machine (SVM) algorithm and a decision tree learning algorithm (C4.5) are used as the classifiers. Features used for classification include conventional Mel-frequency cepstral coefficients (MFCCs), MFCC-like features obtained from the original auditory spectrum (i.e., based on the EA model) and the proposed FFT-based auditory spectrum, as well as spectral features (spectral centroid, bandwidth, etc.) computed from the latter. Compared to the conventional MFCC features, both the MFCC-like and spectral features derived from the proposed FFT-based auditory spectrum show more robust performance in noisy test cases. Test results also indicate that, using the new MFCC-like features, the performance of the proposed FFT-based auditory spectrum is slightly better than that of the original auditory spectrum, while its computational complexity is reduced by an order of magnitude.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 1 )

Date of Publication:

Jan. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.