By Topic

Integrated Supervisory and Operational Control of a Warehouse With a Matrix-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper considers a matrix-based discrete event control approach for a warehouse. The control system is organized in two modules: a dynamic model and a controller. The model provides a complete description of the discrete event dynamics of the warehouse, and is used as a means to track the stock-keeping units, and identify and inhibit control actions that violate system's constraints. The controller has several functions. At the supervisory level, it is in charge of inhibiting operations that may lead to deadlocks, commanding the actual start of the task, and the release of the resources once a task is completed. At the operational level, it is in charge of performing decisions regarding the order in which allowable tasks waiting for service should be performed. All the modules are implemented using the same matrix-based formalism, and thus integrated with each other. The main advantages of the approach are the inherent modularity (the matrix-based control is obtained by assembling individual atomic components), and the integration between the various modules, which permits a better overall resource utilization. Simulation examples describing an actual industrial warehouse are finally provided to emphasize the main advantages of the proposed approach.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:5 ,  Issue: 1 )