By Topic

A Context-Sensitive Clustering Technique Based on Graph-Cut Initialization and Expectation-Maximization Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tyagi, M. ; Dept. of Electr. Eng., IT-Bombay, Mumbai ; Bovolo, F. ; Mehra, A.K. ; Chaudhuri, S.
more authors

This letter presents a multistage clustering technique for unsupervised classification that is based on the following: 1) a graph-cut procedure to produce initial segments that are made up of pixels with similar spatial and spectral properties; 2) a fuzzy c-means algorithm to group these segments into a fixed number of classes; 3) a proper implementation of the expectation-maximization (EM) algorithm to estimate the statistical parameters of classes on the basis of the initial seeds that are achieved at convergence by the fuzzy c-means algorithm; and 4) the Bayes rule for minimum error to perform the final classification on the basis of the distributions that are estimated with the EM algorithm. Experimental results confirm the effectiveness of the proposed technique.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 1 )