Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Universal Noiseless Compression for Noisy Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shamir, G.I. ; Univ. of Utah, Salt Lake City ; Tjalkens, T.J. ; Willems, F.M.J.

We study universal compression for discrete data sequences that were corrupted by noise. We show that while, as expected, there exist many cases in which the entropy of these sequences increases from that of the original data, somewhat surprisingly and counter-intuitively, universal coding redundancy of such sequences cannot increase compared to the original data. We derive conditions that guarantee that this redundancy does not decrease asymptotically (in first order) from the original sequence redundancy in the stationary memoryless case. We then provide bounds on the redundancy for coding finite length (large) noisy blocks generated by stationary memoryless sources and corrupted by some specific memoryless channels. Finally, we propose a sequential probability estimation method that can be used to compress binary data corrupted by some noisy channel. While there is much benefit in using this method in compressing short blocks of noise corrupted data, the new method is more general and allows sequential compression of binary sequences for which the probability of a bit is known to be limited within any given interval (not necessarily between 0 and 1). Additionally, this method has many different applications, including, prediction, sequential channel estimation, and others.

Published in:

Information Theory and Applications Workshop, 2007

Date of Conference:

Jan. 29 2007-Feb. 2 2007