By Topic

Automatically Determining Dominant Motions in Crowded Scenes by Clustering Partial Feature Trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anil M. Cheriyadat ; Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA ; Richard J. Radke

We present a system for automatically identifying dominant motions in a crowded scene. Accurately tracking individual objects in such scenes is difficult due to inter-and intra-object occlusions that cannot be easily resolved. Our approach begins by independently tracking low-level features using optical flow. While many of the feature point tracks are unreliable, we show that they can be clustered into dominant motions using a distance measure for feature trajectories based on longest common subsequences. Results on real video sequences demonstrate that the approach can successfully identify both dominant and anomalous motions in crowded scenes. These fully-automatic algorithms could be easily incorporated into distributed camera networks for autonomous scene analysis.

Published in:

2007 First ACM/IEEE International Conference on Distributed Smart Cameras

Date of Conference:

25-28 Sept. 2007