Cart (Loading....) | Create Account
Close category search window
 

Outdoor-to-Indoor Office MIMO Measurements and Analysis at 5.2 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wyne, S. ; Dept. of Electr. & Inf. Technol., Lund Univ., Lund ; Molisch, A.F. ; Almers, P. ; Eriksson, G.
more authors

The outdoor-to-indoor wireless propagation channel is of interest for cellular and wireless local area network applications. This paper presents the measurement results and analysis based on our multiple-input-multiple-output (MIMO) measurement campaign, which is one of the first to characterize the outdoor-to-indoor channel. The measurements were performed at 5.2 GHz; the receiver was placed indoors at 53 different locations in an office building, and the transmitter was placed at three "base station" positions on a nearby rooftop. We report on the root-mean-square (RMS) angular spread, building penetration, and other statistical parameters that characterize the channel. Our analysis is focused on three MIMO channel assumptions often used in stochastic models. 1) It is commonly assumed that the channel matrix can be represented as a sum of a line-of-sight (LOS) contribution and a zero-mean complex Gaussian distribution. Our investigation shows that this model does not adequately represent our measurement data. 2) It is often assumed that the Rician if-factor is equal to the power ratio of the LOS component and the other multipath components (MPCs). We show that this is not the case, and we highlight the difference between the Rician if-factor often associated with LOS channels and a similar power ratio for the estimated LOS MPC. 3) A widespread assumption is that the full correlation matrix of the channel can be decomposed into a Kronecker product of the correlation matrices at the transmit and receive array. Our investigations show that the direction-of-arrival (DOA) spectrum noticeably depends on the direction-of-departure (DOD); therefore, the Kronecker model is not applicable, and models with less-restrictive assumptions on the channel, e.g., the Weichselberger model or the full correlation model, should be used.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 3 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.