By Topic

Observability Measures and Their Application to GPS/INS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this paper, two observability measures are introduced for a discrete linear system. The degrees of observability of both the system and its subspaces can be examined with these measures. The measures are well conditioned to perturbation and applicable to multi-input/multi-output time-varying systems. The relations among observability, observability measures, error covariance, and the information matrix are presented. It is shown that the measures have direct connections with the singular value decomposition of the information matrix. In contrast to the error covariance, the measures are determined by the system model and independent of the initial error covariance. An example of the observability analysis of the Global Positioning System/inertial navigation system is given. The measures are confirmed to be less sensitive to the system model perturbation. It is also shown that the vertical component of the gyro bias can be considered unobservable with a tactical-grade inertial measurement unit for a horizontal constant-speed motion.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 1 )