Cart (Loading....) | Create Account
Close category search window
 

Analysis of Serial-Search-Based Code Acquisition in the Multiple-Transmit/Multiple-Receive-Antenna-Aided DS-CDMA Downlink

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
SeungHwan Won ; Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton ; Hanzo, L.

In this paper, we investigate the serial-search-based initial code-acquisition performance of direct-sequence code division multiple access (DS-CDMA) employing multiple transmit/multiple receive antennas when communicating over uncorrelated Rayleigh channels. We characterize the associated performance trends as a function of the number of antennas. It is demonstrated that, in contrast to our expectation, the achievable correct-detection probability degrades in our typical target operational range as the number of transmit antennas is increased. When maintaining a given total transmit power, our findings suggest that increasing the number of transmit antennas results in the combination of the low-energy noise-contaminated signals of the transmit antennas, which ultimately increases the mean acquisition time (MAT). However, it is extremely undesirable to increase the MAT when the system is capable of attaining its target bit-error-ratio performance at reduced signal-power levels, as a benefit of employing multiple transmit antennas.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:57 ,  Issue: 2 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.