By Topic

MMSE Noise Plus Interference Power Estimation in Adaptive OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yucek, T. ; Atheros Commun. Inc., Santa Clara ; Arslan, H.

Noise variance and signal-to-noise ratio are important parameters for adaptive orthogonal frequency-division multiplexing (OFDM) systems since they serve as a standard measure of signal quality. Conventional algorithms assume that the noise statistics remain constant over the OFDM frequency band and, thereby, average the instantaneous noise samples to get a single estimate. In reality, noise is often made up of white Gaussian noise, along with correlated colored noise that unevenly affects the OFDM spectrum. This paper proposes a minimum mean square error (MMSE) filtering technique to estimate the noise power that takes into account the variation of the noise statistics across the OFDM subcarrier index, as well as across OFDM symbols. The proposed method provides many local estimates that allow tracking of the variation of noise statistics in frequency and time. The MMSE filter coefficients are obtained from the mean-squared-error expression, which can be calculated using the noise statistics. Evaluation of the performance with computer simulations shows that the proposed method tracks the local statistics of the noise more efficiently than conventional methods.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:56 ,  Issue: 6 )