Cart (Loading....) | Create Account
Close category search window

Compensation of Phase Noise in OFDM Wireless Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qiyue Zou ; California Univ., Los Angeles ; Tarighat, A. ; Sayed, A.H.

Phase noise causes significant degradation in the performance of orthogonal frequency division multiplexing (OFDM)-based wireless communication systems. The presence of phase noise can reduce the effective signal-to-noise ratio (SNR) at the receiver, and consequently, limit the bit error rate (BER) and data rate. In this paper, the effect of phase noise on OFDM wireless systems is studied, and a compensation scheme is proposed to mitigate the common phase error and intercarrier interference (ICI) caused by phase noise. In the proposed scheme, the communication between the transmitter and receiver blocks consists of two stages. In the first stage, block-type pilot symbols are transmitted and the channel coefficients are jointly estimated with the phase noise in the time domain. In the second stage, comb-type OFDM symbols are transmitted such that the receiver can jointly estimate the data symbols and the phase noise. It is shown both by theory and computer simulations that the proposed scheme can effectively mitigate the ICI caused by phase noise and improve the BER of OFDM systems. Another benefit of the proposed scheme is that the sensitivity of OFDM receivers to phase noise can be significantly lowered, which helps simplify the oscillator and circuitry design in terms of implementation cost and power consumption.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.