By Topic

Downlink MMSE Transceiver Optimization for Multiuser MIMO Systems: Duality and Sum-MSE Minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shuying Shi ; Tech. Univ. of Berlin, Berlin ; Schubert, M. ; Boche, H.

We address the problem of minimum mean square error (MMSE) transceiver design for point-to-multipoint transmission in multiuser multiple-input-multiple-output (MIMO) systems. We focus on the problem of minimizing the downlink sum-MSE under a sum power constraint. It is shown that this problem can be solved efficiently by exploiting a duality between the downlink and uplink MSE feasible regions. We propose two different optimization frameworks for downlink MMSE transceiver design. The first one solves an equivalent uplink problem, then the result is transferred to the original downlink problem. Duality ensures that any uplink MMSE scheme, e.g., linear MMSE reception or MMSE-decision feedback equalization (DFE), has a downlink counterpart. We propose two globally optimum algorithms based on convex optimization. The basic idea of the second framework is to perform optimization in an alternating manner by switching between the virtual uplink and downlink channels. This strategy exploits that the same MSE can be achieved in both links for a given choice of transmit and receive filters. This iteration is proven to be convergent.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 11 )