Cart (Loading....) | Create Account
Close category search window

Effective Course-of-Action Determination to Achieve Desired Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haider, S. ; George Mason Univ., Fairfax ; Levis, A.H.

An evolutionary algorithm-based approach to identify effective courses of action (COAs) in dynamic uncertain situations is presented. The uncertain situation is modeled using timed influence nets, an instance of dynamic Bayesian networks. The approach makes significant enhancements to the current trial-and-error-based manual technique, which is not only labor intensive but also not capable of modeling constraints among actionable events. The proposed approach is an attempt to overcome these limitations. It automates the process of COA identification. It also allows a system analyst to capture certain types of constraints among actionable events. Because of its parallel search nature, the approach produces multiple COAs that have a similar fitness value. This feature not only gives more flexibility to a decision maker during mission planning, but it can also be used to generalize the COAs if there exists a pattern among them. This paper also discusses a heuristic that further enhances the performance of the approach.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:37 ,  Issue: 6 )

Date of Publication:

Nov. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.