By Topic

Scientific workflow scheduling in computational grids — Planning, reservation, and data/network-awareness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yonghong Yan ; Department of Computer Science, University of Houston, USA ; Barbara Chapman

A very important issue in executing a scientific workflow in computational grids is how to map and schedule workflow tasks onto multiple distributed resources and handle task dependencies in a timely manner to deliver users' expected performance. In this paper, we present our work to develop and evaluate an advanced workflow scheduler in computational grid environments, the GRACCE scheduler. The GRACCE scheduler applies advanced scheduling techniques, such as resource negotiation and reservation, data/network-aware scheduling and performance prediction in the resource allocation and execution planning process. To evaluate the scheduler, we have set up an experimental environment that models a computational grid in those aspects relevant to workflow scheduling. Our results show the average performance improvement, using the GRACCE scheduler, is about 20% under high resource loads.

Published in:

2007 8th IEEE/ACM International Conference on Grid Computing

Date of Conference:

19-21 Sept. 2007