Cart (Loading....) | Create Account
Close category search window

Mutual Nonlinear Prediction of Cardiovascular Variability Series: Comparison between Exogenous and Autoregressive Exogenous Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Faes, L. ; Univ. of Trento, Trento ; Porta, A. ; Nollo, G.

A model-based approach to perform mutual nonlinear prediction of short cardiovascular variability series is presented. The approach is based on identifying exogenous (X) and autoregressive exogenous (ARX) models by K-nearest neighbors local linear approximation, and estimates the predictability of a series given the other as the squared correlation between original and predicted values of the series. The method was first tested on simulations reproducing different types of interaction between non-identical Henon maps, and then applied to heart rate (HR) and blood pressure (BP) variability series measured in healthy subjects at rest and after head-up tilt. Simulations showed that different coupling conditions were always detected by the X model but not by the ARX model. The comparison between X and ARX models suggested the presence of oscillatory sources determining the regularity of HR and BP dynamics independently of their closed-loop mutual regulation. The transition from supine to upright position was associated with an enhancement of the HR and BP mutual regulation, compatible with the activation of the sympathetic nervous system induced by tilt.

Published in:

Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE

Date of Conference:

22-26 Aug. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.