By Topic

A Laboratory Study on a Capacitive Displacement Sensor as an Implant Microphone in Totally Implant Cochlear Hearing Aid Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Ping Huang ; Case Western Reserve Univ., Cleveland ; Jun Guo ; Megerian, C.A. ; Young, D.J.
more authors

A totally implant cochlear hearing aids system, integrating an implant microphone, interface electronics, a speech processor, a stimulator, and cochlear electrodes, can overcome the uncomfortable, inconvenient, and stigma problems associated with the conventional and semi-implantable hearing aids. This paper presents a laboratory feasibility study on the use of an electret condenser microphone (ECM) displacement sensor, serving as an implant microphone, and combined with a spring coupler to directly sense the umbo acoustic vibration. The umbo vibration characteristics were extracted from literature to determine the coupler and sensor requirements. A laboratory model was built to simulate the vibration source and experimentally study the transmission coefficient. Experimental data demonstrate that by using a 5 N/m stiffness spring, the umbo vibration amplitude as high as 67% can be transmitted to the sensor. Measurement of the sensor system on the temporal bone was also made. The minimum detectable sound pressure level (SPL) at 1 kHz is 41 and 67 dB for laboratory and 38 and 64 dB for temporal bone measurement for 1 and 388 Hz bandwidth, respectively. Better performance was achieved in a higher frequency. Results and analysis of this study can be used as a guideline for the future design of displacement sensors as implant microphones.

Published in:

Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE

Date of Conference:

22-26 Aug. 2007