By Topic

Digital Mammogram Spiculated Mass Detection and Spicule Segmentation using Level Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
John E. Ball ; Graduate Student Member, IEEE, GeoResources Institute, Mississippi State University, Starkville, MS 39759, USA. e-mail: ; Lori Mann Bruce

This letter presents an automated mammographic computer aided diagnosis (CAD) system to detect and segment spicules in digital mammograms, termed spiculation segmentation with level sets (SSLS). SSLS begins with a segmentation of the suspicious mass periphery, which is created using a previously developed adaptive level set segmentation algorithm (ALSSM) by the authors. The mammogram is then analyzed using features derived from the Dixon and Taylor line operator (DTLO), which is a method of linear structure enhancement. Features are extracted, optimized, and then the suspicious mass is classified as benign or malignant. To assess the system efficacy, 60 difficult mammographic images from the digital database of screening mammography (DDSM), containing 30 benign non-spiculated cases, 17 malignant spiculated cases, and 13 malignant non-spiculated cases, are analyzed. The initial spiculation detection method found 100% of the spiculated lesions with no false positive detections, and has area under the receiver operating characteristics (ROC) curve Az=1.0. The values using ALSSM (periphery segmentation only) are Az=0.9687 and 0.9708 for two investigated feature sets, and increases to Az=0.9862 using SSLS (spiculation segmentation). The best classification results are 93% overall accuracy (OA), with three false positives (FP) and one false negative (FN) using a 1-NN (nearest neighbor) or 2-NN classifier, and 92% OA with three FP and two FN using a maximum likelihood classifier.

Published in:

2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

22-26 Aug. 2007