By Topic

How to extract marker genes from microarray data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Schachtner, R. ; Univ. of Regensburg, Regensburg ; Lutter, D. ; Theis, F.J. ; Lang, E.W.
more authors

In this study we focus on classification tasks and apply matrix factorization techniques like principal component analysis (PCA), independent component analysis (ICA) and non-negative matrix factorization ( NMF) to a microarray data set. The latter monitors the gene expression levels (GEL) of mononcytes and macrophages during and after differentiation. We show that these tools are able to identify relevant signatures in the deduced matrices and extract marker genes from these gene expression profiles (GEPs) without the need for extensive data bank search for appropriate functional annotations. With these marker genes corresponding test data sets can then easily be classified into related diagnostic categories.

Published in:

Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE

Date of Conference:

22-26 Aug. 2007