By Topic

Real-time Daily Activity Classification with Wireless Sensor Networks using Hidden Markov Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin He ; Michigan Technol. Univ., Houghton ; Huaming Li ; Jindong Tan

This paper presents a hidden Markov model (HMM) approach for real-time activity classification using signals from wearable wireless sensor networks. A wearable wireless sensor network can be used to continuously monitor the daily activities of a subject in real time. However, the wireless sensor nodes are constrained by limited battery and computing resources. The proposed HMM framework has been applied to find the most probable activity states series with low data transmission rate, which makes it highly suitable for daily activity classification applications. The performance was evaluated using a small sensor network consisting of three accelerometers. The activity detection rate is 95.82%, using a test set of 5 subjects with 11 activity series.

Published in:

Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE

Date of Conference:

22-26 Aug. 2007