Cart (Loading....) | Create Account
Close category search window
 

A mathematical model of the mechanical deformation of the carotid artery wall and its application to clinical data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stoitsis, J. ; Nat. Tech. Univ. of Athens, Athens ; Golemati, S. ; Bastouni, E. ; Nikita, K.S.

The study of arterial wall mechanics, including the study of stresses and strains experienced by the vascular wall, is pivotal in our understanding of arterial physiology. In this paper, a mathematical model is provided describing the deformation of the arterial wall in terms of 6 parameters. Actual deformation waveforms were also obtained from the analysis of B-mode ultrasound image sequences of the carotid artery using block-matching. The mathematical model was fitted to the clinical data using nonlinear least squares to determine the 6 parameters for 6 different locations along the posterior and 6 along the anterior walls, on the interface between the lumen and the intima-media complex (L-IM). On the posterior wall, 6 locations were also investigated at the interface between the intima-media complex and the adventitia (IM-A) as well as at the adventitia-surrounding tissue (A-T) boundary. The root mean square error was low for all locations indicating a good fit of the proposed model to the clinical data. The amplitude of the deformation, expressed through parameter alpha, was significantly lower in the A-T interface compared to the other two interfaces. The time when the systolic peak occurs, expressed through parameter t1, was significantly lower in the L-IM interface compared to the other two interfaces. Preliminary findings from a small group of diseased wall locations suggested that the parameters a, b and t1 were significantly different than healthy cases. This probably reflects alterations of arterial wall mechanics due to disease. This study showed that the proposed mathematical model is a satisfactory representation of the mechanical deformation of the carotid artery wall in the radial direction and can provide valuable information in the understanding of the mechanical behavior of the arterial wall.

Published in:

Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE

Date of Conference:

22-26 Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.