By Topic

Improvement of Automated Detection Method of Lacunar Infarcts in Brain MR Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

The detection of asymptomatic lacunar infarcts on magnetic resonance (MR) images are important tasks for radiologists to ensure the prevention of severe cerebral infarction. However, their accurate identification is often difficult task. Therefore, the purpose of this study is to develop a computer- aided diagnosis scheme for the detection of lacunar infarcts. Our database consisted of 1,143 T1- and 1,143 T2-weighted images obtained from 132 patients. We first segmented the cerebral region in the Tl- weighted image by using a region growing technique. For identifying the initial lacunar infarcts candidates, white top-hat transform and multiple-phase binarization were then applied to the T2- weighted image. For eliminating false positives (FPs), we determined 12 features, i.e., the locations x and y, density differences in the Tl- and T2-weighted images, nodular components (NC), and nodular & linear components (NLC) from a scale 1 to 4. The NCs and NLCs were obtained using filter bank technique. The rule-based scheme and a neural network with 12 features were employed as the first step for eliminating FPs. The modular classifier was then used for eliminating three typical sources of FPs. As a result, the sensitivity of the detection of lacunar infarcts was 96.8% with 0.30 FP per image. Our computerized scheme would assist radiologists in identifying lacunar infarcts on MR images.

Published in:

2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society

Date of Conference:

22-26 Aug. 2007