By Topic

A Finite Element Analysis of Local Oscillometric Blood Pressure Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaltis, P.A. ; Massachusetts Inst. of Technol., Cambridge ; Reisner, A.T. ; Asada, H.H.

Traditional circumferential oscillometric blood pressure measurements are based on a complex interplay between the perturbed underlying artery and the surrounding tissue. When there is a balance in pressures acting across the arterial wall, the pulsation amplitude is expected to be a maximum. The purpose of this study was to examine the change in pulsation amplitude for a given pressure resulting from a focally applied compression. A non-linear, two- dimensional finite element analysis of an average fingerbase was used to determine the overall pressure distributions within the finger as well as to compare the feasibility of the focally applied oscillometric approach for blood pressure (BP) measurements. We found that the focally applied pressure appears to lead to only a slight underestimation of the BP (1.5 mmHg). Furthermore, it does not significantly inhibit global bloodflow and should therefore be an acceptable method for long-term blood pressure monitoring.

Published in:

Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE

Date of Conference:

22-26 Aug. 2007