By Topic

An L1-Method for the Design of Linear-Phase FIR Digital Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grossmann, L.D. ; Technion-Israel Inst. of Technol., Haifa ; Eldar, Y.C.

This paper considers the design of linear-phase finite impulse response digital filters using an L1 optimality criterion. The motivation for using such filters as well as a mathematical framework for their design is introduced. It is shown that L1 filters possess flat passbands and stopbands while keeping the transition band comparable to that of least-squares filters. The uniqueness of L1-based filters is explored, and an alternation type theorem for the optimal frequency response is derived. An efficient algorithm for calculating the optimal filter coefficients is proposed, which may be viewed as the analogue of the celebrated Remez exchange method. A comparison with other design techniques is made, demonstrating that the L1 approach may be a good alternative in several applications.

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 11 )