Cart (Loading....) | Create Account
Close category search window
 

Generalized Quadratic Receivers for Unitary Space–Time Modulation Over Rayleigh Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li, Rong ; Nat. Univ. of Singapore, Singapore ; Pooi Yuen Kam

We propose the generalized quadratic receivers (GQRs) for unitary space-time modulation over flat Rayleigh fading channels. The GQRs realize the performance improvement potential, known to be approximately 2-4 dB, between the quadratic receiver (QR) and the coherent receiver (CR), by performing channel estimation without the help of additional training signals that consume additional bandwidth. They are designed for various unitary space-time constellations (USTC) in which signal matrices may or may not contain explicit inherent training blocks, and may be orthogonal or nonorthogonal to one another. As the channel memory span exploited for channel estimation increases, the error probability of the GQRs reduces from that of the QR to that of the CR. The GQRs work well for both slow and fast fading channels, and the performance improvement increases as the channel fade rate decreases. For a class of USTC with the orthogonal design structure, the GQR is simplified to a form whose complexity can be less than the complexity of the QR or even that of the simplified form of the QR.

Published in:

Communications, IEEE Transactions on  (Volume:55 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.