Cart (Loading....) | Create Account
Close category search window
 

In Situ Characterization of Two Wireless Transmission Schemes for Ingestible Capsules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Wang ; Univ. of Glasgow, Glasgow ; Drysdale, T.D. ; Cumming, D.R.S.

We report the experimental in situ characterization of 30-40 MHz and 868 MHz wireless transmission schemes for ingestible capsules, in porcine carcasses. This includes a detailed study of the performance of a magnetically coupled near-field very high-frequency (VHF) transmission scheme that requires only one eighth of the volume and one quarter of the power consumption of existing 868-MHz solutions. Our in situ measurements tested the performance of four different capsules specially constructed for this study (two variants of each transmission scheme), in two scenarios. One mimicked the performance of a body-worn receiving coil, while the other allowed the characterization of the direction-dependent signal attenuation due to losses in the surrounding tissue. We found that the magnetically coupled near-field VHF telemetry scheme presents an attractive option for future, miniturized ingestible capsules for medical applications.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.