By Topic

Development of a High-Speed Permanent-Magnet Brushless DC Motor for Driving Embroidery Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiaxin Chen ; Coll. of Electromech. Eng., Shanghai ; Youguang Guo ; Jianguo Zhu

We describe the development of a permanent-magnet (PM) brushless DC motor for driving high-speed embroidery machines by employing advanced design and analysis techniques. In the design of the motor, magnetic field finite-element analyses accurately calculate the key motor parameters such as the air-gap flux, back electromotive force (EMF), and inductance. Using the numerical magnetic field solutions, a modified incremental energy method calculates the self and mutual inductances of the stator windings. A phasor diagram is derived to compute the motor's steady-state characteristics. To predict the dynamic performance and increase the prediction accuracy, a Simulink-based model simulates the motor performance with the real waveforms of applied phase voltage, back EMF, and current. The motor prototype tested with both a dynamometer and a high-speed embroidery machine validated the theoretical calculations.

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 11 )