By Topic

Modeling and Circuit Synthesis for Independently Controlled Double Gate FinFET Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Independent control of front and back gate in double gate (DG) devices can be used to merge parallel transistors in noncritical paths. This reduces the effective switching capacitance and, hence, the dynamic power dissipation of a circuit. However, efficient design of large-scale circuits with DG devices is not well explored due to lack of proper modeling and large-scale design simulation tools. In this paper, we propose several low-power circuit options using independent gate FinFETs. We developed semianalytical models for different FinFET logic gates to predict their performance. An efficient circuit synthesis methodology comprised of proposed low-power logic options in FinFET design library has been developed. Results show about 8.5% area savings and 18% power savings over conventional FinFET technology for ISCAS85 benchmark circuits in 45-nm technology with no performance penalty.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:26 ,  Issue: 11 )