By Topic

Enhanced Leakage Reduction Techniques Using Intermediate Strength Power Gating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Singh, H. ; Univ. of Michigan, Ann Arbor ; Agarwal, K. ; Sylvester, D. ; Nowka, K.J.

The exponential increase in leakage power due to technology scaling has made power gating an attractive design choice for low-power applications. In this paper, we explore this design style in large combinational circuit blocks and latch-to-latch datapaths and introduce a novel power gating approach to yield an improved power-performance tradeoff. We first present a multiple sleep mode power gating technique where each mode represents a different point in the wake-up overhead versus leakage savings design space. We show that the high wake-up latency and wake-up power penalty of traditional power gating limits its application to large stretches of inactivity. The multiple-mode feature allows a processor to enter power saving modes more frequently, hence, resulting in enhanced leakage savings. We apply the multimode power gating technique to datapaths where the degree of applied power gating becomes progressively stronger (harder) along the datapath. This configuration allows us to further balance wake-up overhead with leakage savings by exploiting the fact that logic circuits deep in the datapath have higher wakeup margin and hence can be strongly gated. Simulations show that multiple sleep mode capability provides an extra 17% reduction in overall leakage compared to traditional single mode gating. The multiple modes can be designed to allow state-retentive modes. The results on benchmarks show that a single state-retentive mode can reduce leakage by 19% while preserving state of the circuit.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 11 )