By Topic

The Design of High-Performance Dynamic Asynchronous Pipelines: High-Capacity Style

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Singh, M. ; North Carolina Univ., Chapel Hill ; Nowick, S.M.

This paper introduces a high-throughput asynchronous pipeline style, called high-capacity (HC) pipelines, targeted to datapaths that use dynamic logic. This approach includes a novel highly-concurrent handshake protocol, with fewer synchronization points between neighboring pipeline stages than almost all existing asynchronous dynamic pipelining approaches. Furthermore, the dynamic pipelines provide 100% buffering capacity, without explicit latches, by means of separate pullup and pulldown control for each pipeline stage: neighboring stages can store distinct data items, unlike almost all existing latchless dynamic asynchronous pipelines. As a result, very high throughput is obtained. Fabricated first-input-first-output (FIFO) designs, in 0.18-m technology, were fully functional over a wide range of supply voltages (1.2 to over 2.5 V), exhibiting a corresponding range of throughputs from 1.0-2.4 giga items/s. In addition, an experimental finite-impulse response (FIR) filter chip was designed and fabricated with IBM Research, whose speed-critical core used an HC pipeline. The HC pipeline exhibited throughputs up to 1.8 giga items/s, and the overall filter achieved 1.32 giga items/s, thus obtaining 15% higher throughput and 50% lower latency than the fastest previously-reported synchronous FIR filter, also designed at IBM Research.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:15 ,  Issue: 11 )