Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Experimental Comparison of Position Tracking Control Algorithms for Pneumatic Cylinder Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bone, G.M. ; McMaster Univ., Hamilton ; Shu Ning

Many researchers have investigated pneumatic servo positioning systems due to their numerous advantages: inexpensive, clean, safe, and high ratio of power to weight. However, the compressibility of the working medium, air, and the inherent nonlinearity of the system continue to make achieving accurate position control a challenging problem. In this paper, two control algorithms are designed for the position tracking problem and their experimental performance is compared for a pneumatic cylinder actuator. The first algorithm is sliding-mode control based on a linearized plant model (SMCL) and the second is sliding-mode control based on a nonlinear plant model (SMCN). Extensive experiments using different payloads (1.9, 5.8, and 10.8 kg), vertical and horizontal movements, and move sizes from 3 to 250 mm were conducted. Averaged over 70 experiments with various operating conditions, the tracking error for SMCN was 18% less than with SMCL. For a 5.8-kg payload and a 0.5-Hz 70-mm amplitude, sine wave reference trajectory, the root-mean-square error with SMCN was less than 0.4 mm for both vertical and horizontal motions. This tracking control performance is better than those previously reported for similar systems.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:12 ,  Issue: 5 )