By Topic

A Queuing-Theoretic Approach to Task Scheduling and Processor Selection for Video-Decoding Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mastronarde, N.H. ; California Univ., Los Angeles ; van der Schaar, M.

We propose a cross-layer design for resource-constrained systems that simultaneously decode multiple video streams on multiple parallel processors, cores, or processing elements. Our proposed design explicitly considers the coder specific application characteristics such as the decoding dependencies, decoding deadlines, and distortion impacts of different video packets (e.g., frames, slices, groups of slices etc.). The key to the cross-layer design is the resource management control plane (RMCP) that coordinates the scheduling and processor selection across the active applications. The RMCP deploys a priority-queuing model that can evaluate the system congestion and predict the total expected video quality for the set of active decoding tasks. Using this model, we develop a robust distortion-and delay-aware scheduling algorithm for video packets. This algorithm aims to maximize the sum of achieved video qualities over all of the decoded video sequences. Additionally, we propose a processor selection scheme intended to minimize the delays experienced by the queued video packets. In this way, the number of missed decoding deadlines is reduced and the overall decoded video quality is increased. We compare queuing-theoretic based scheduling strategies to media agnostic scheduling strategies (i.e., earliest-deadline-first scheduling) that do not jointly consider the decoding deadlines and distortion impacts. Our results illustrate that by directly considering the video application's properties in the design of a video decoding system, significant system performance gains on the order of 4 dB peak-signal-to-noise ratio can be achieved.

Published in:

Multimedia, IEEE Transactions on  (Volume:9 ,  Issue: 7 )