By Topic

Encoding of Affine Motion Vectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kordasiewicz, R.C. ; LSI Logic Corp., Waterloo ; Gallant, M.D. ; Shirani, S.

An affine motion model provides better motion representation than a translational motion model. Therefore, it is a good candidate for advanced video compression algorithms, requiring higher compression efficiency than current algorithms. One disadvantage of the affine motion model is the increased number of motion vector parameters, therefore increased motion vector bit rate. We develop and analyze several simulation based approaches of entropy coding for orthonormalized affine motion vector (AMV) coefficients, by considering various context-types and coders. In our work we expand the traditional idea of a context type by introducing four new context types. We compare our method of contexts-type and coder selection with context quantization. The best of our contexts-type and coder solutions produces 4% to 15% average AMV bit-rate reductions over the original VLC approach. For more difficult content AMV bit rate reduction up to 26% is reported.

Published in:

Multimedia, IEEE Transactions on  (Volume:9 ,  Issue: 7 )