By Topic

Precise BER analysis of π/4-DQPSK OFDM with carrier frequency offset over frequency selective fast fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peng Tan ; TELUS Commun. Co., Edmonton ; Beaulieu, N.C.

An exact closed-form bit error rate (BER) expression is derived for an orthogonal frequency-division multiplexing system with π/4-shifted differentially encoded quadrature phase shift keying (π/4-DQPSK) in the presence of carrier frequency offset over frequency-selective fast Rayleigh fading channels. Different system configurations, including time domain differential modulation, frequency domain differential modulation, single channel reception, and multi-channel reception with maximal ratio combining diversity, are considered in the exact BER analysis. For a small number of subcarriers, the BER expression can be calculated directly. A Monte Carlo method is designed to evaluate the BER for a large number of subcarriers. The analytical expression can be used to investigate the effect of several channel parameters, including mean delay spread and maximum Doppler spread, on the system BER performance. Particularly, the effect of carrier frequency offset on the system performance, and the differences and opportunities to use frequency domain differential modulation or time domain differential modulation, can be studied in a quantitative way for a more realistic wireless channel environment model. By using the exact closed-form BER expression, an optimum number of subcarriers can be found, and the allowable carrier frequency offset, Doppler spread, and mean delay spread for given operating conditions can be determined.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 10 )