By Topic

Optimal Spatial Correlations for the Noncoherent MIMO Rayleigh Fading Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Srinivasan, Shivratna Giri ; Univ. of Colorado, Boulder ; Varanasi, M.K.

The behavior in terms of information theoretic metrics of the discrete-input, continuous-output noncoherent MIMO Rayleigh fading channel is studied as a function of spatial correlations. In the low SNR regime, the mutual information metric is considered, while at higher SNR regimes the cutoff rate expression is employed. For any fixed input constellation and at sufficiently low SNR, a fully correlated channel matrix is shown to maximize the mutual information. In contrast, at high SNR, a fully uncorrelated channel matrix (with independent identically distributed elements) is shown to be optimal, under a condition on the constellation which ensures full diversity. In the special case of the separable correlation model, it is shown that as a function of the receive correlation eigenvalues, the cutoff rate expression is a Schur-convex function at low SNR and a Schur-concave function at high SNR, and as a function of transmit correlation eigenvalues, the cutoff rate expression is Schur-concave at high SNR for full diversity constellations. Moreover, at sufficiently low SNR, the fully correlated transmit correlation matrix is optimal. Finally, for the general model, it is shown that the optimal correlation matrices at a general SNR can be obtained using a difference of convex programming formulation.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 10 )